### 6.1 Area Between Curves

Consider the region A that lies between two curves, $y=f(x)$ and $y=g(x)$ and the vertical lines $x=a$ and $\mathbf{x}=\mathrm{b}$, where f and $\mathbf{g}$ are continuous functions and $f(x) \geq g(x)$ for all x in $[\mathrm{a}, \mathrm{b}]$.



Net Area between $f(x)$ and $g(x)$


The area A of the region bounded by the curves $y=f(x), y=g(x)$, and the lines $\mathrm{x}=\mathrm{a}, \mathrm{x}=\mathrm{b}$, where $f$ and $\boldsymbol{g}$ are continuous and $f(x) \geq g(x)$ for all $x$ in $[a, b]$ is

$$
A=\int_{a}^{b}[f(x)-g(x)] d x
$$

Example: Find the area of the region bounded by the graphs $f(x)=5-x^{2}$ and $g(x)=x^{2}-3$.
This problem has multiple steps. We need to graph $\mathbf{f}(\mathbf{x})$ and $\mathbf{g}(\mathbf{x})$ to determine which function is greater in the domain. In addition, we need to solve for the domain. Lets first find the intersection by setting the functions equal to each other.

$$
\begin{aligned}
& 5-x^{2}=x^{2}-3, \text { solve for } \mathrm{x} \\
& \qquad 8=2 x^{2} \Rightarrow 4=x^{2} \Rightarrow \boldsymbol{x}= \pm \mathbf{2}
\end{aligned}
$$

$\boldsymbol{x}= \pm \mathbf{2}$ become the limits of integration. Below is the graph of the two functions.


Note that $\mathbf{f}(\mathbf{x}) \geq \mathbf{g}(\mathbf{x}) \forall \mathbf{x}$ in $[-2,2]$ ( $\forall$ means "for all")
Therefore the region has an area of:
$A=\int_{-2}^{2}\left[\left(5-x^{2}\right)-\left(x^{2}-3\right)\right] d x$ since these functions are even and the area has $y$-axis symmetry, then $A=$
$\left.2 \int_{0}^{2}\left(8-2 x^{2}\right) d x=2\left(8 x-\frac{2}{3} x^{3}\right)\right]_{0}^{2}=\frac{\mathbf{6 4}}{\mathbf{3}}$

Example: Find the area bounded by the graphs of $f(x)=-x^{2}+3 x+6$ and $g(x)=|2 x|$.
This is a compound problem because of the absolute value, but we know that

$$
g(x)=|2 x|=\left\{\begin{array}{c}
2 x \text { if } x \geq 0 \\
-2 x \text { if } x<0
\end{array}\right.
$$

To find the intersections, we need to set $f(\mathbf{x})=\mathbf{g}(\mathbf{x})$ and solve for $\mathbf{x}$. We have to do this in two parts.

For $\mathbf{x}<0$ :
$-x^{2}+3 x+6=-2 x$
$-x^{2}+5 x+6=0$
$(x+1)(x-6)=0$
$x=-1 \& x=6$

$$
-x^{2}+3 x+6=2 x
$$

For $\mathrm{x} \geq 0$ :
$-x^{2}+x+6=0$
$(x+2)(x-3)=0$
$x=-2 \& x=3$

The area between the curves lies between the intersection points of [-1,3], we do not use $6 \&-2$.


Since we have a piecewise function, we need to separate the problem into two integrals (two regions).

$$
\begin{gathered}
A=\int_{-1}^{0}\left[\left(-x^{2}+3 x+6\right)-(-2 x)\right] d x+\int_{0}^{3}\left[\left(-x^{2}+3 x+6\right)-(2 x)\right] d x \\
A=\int_{-1}^{0}\left(-x^{2}+5 x+6\right) d x+\int_{0}^{3}\left(-x^{2}+x+6\right) d x \\
\left.\left.A=\left(-\frac{1}{3} x^{3}+\frac{5}{2} x^{2}+6 x\right)\right]_{-1}^{0}+\left(-\frac{1}{3} x^{3}+\frac{1}{2} x^{2}+6 x\right)\right]_{0}^{3} \\
A=\left[0-\left(\frac{1}{3}+\frac{5}{2}-6\right)\right]+\left[\left(-9+\frac{9}{2}+18\right)-0\right]=\frac{\mathbf{5 0}}{\mathbf{3}}
\end{gathered}
$$

There are times where, if it is convenient (or possibly necessary), to reverse the roles of $\mathbf{x}$ and $\mathbf{y}$. If the region is bounded by courves with equations $x=f(y), x=g(y), y=c, \& y=d$ where $f$ and $g$ are continuous and $f(y) \geq g(y)$ for $\forall$ in [c, d], then the area is

$$
A=\int_{c}^{d}[f(y)-g(y)] d y
$$

Consider the following curves. (Notice these curves may not be functions.)




Example: Find the area of the region $\mathbf{R}$ bounded by the graphs of $y=x^{3}, y=x+6$, and the $x$-axis. Graph the functions.


Find the point(s) of intersection for $\mathbf{y}$.
Since $y=x^{3}$, we can rewrite it as $x=y^{\frac{1}{3}}$, and for the line $y=x+6$, we can rewrite it as $x=y-6$. So $y^{\frac{1}{3}}=y-6 \Rightarrow$ $y=(y-6)^{3}$. Expand and solve for $y$. (Precalculus!!!)
(Hint: $\left.(a-b)^{3}=a^{3}-3 a^{2} b+3 a b^{2}-b^{3}\right)$
$y=y^{3}-18 y^{2}+108 y-216,0=y^{3}-18 y^{2}+107 y-216$
Using the $\pm \frac{P}{q}$ method of finding zeros we see that $\mathrm{y}=8$ is the only real solution.

Notice that the region goes from $\mathbf{y}=0$ to $\mathrm{y}=8$. These are the limits of integration.
$\left.\int_{0}^{8}\left[\left(y^{\frac{1}{3}}\right)-(y-6)\right] d y=\int_{0}^{8}\left(y^{\frac{1}{3}}-y+6\right) d y=\left(\frac{3}{4} y^{\frac{4}{3}}-\frac{1}{2} y^{2}+6 y\right)\right]_{0}^{8}=\left(\frac{3}{4} \cdot 16-32+48\right)-0=28$

The chart below summarizes the method of finding the area between two or more curves.

Area between curves
$=\int_{\text {left bound }}^{\text {right bound }}$ (top curve - bottom curve) $d x$



$$
A_{1}=\int_{a}^{b} f(x) d x
$$

$$
A_{2}=\int_{a}^{b} g(x) d x
$$

$$
A_{\text {between }}=A_{1}-A_{2}
$$

$$
\begin{aligned}
A_{\text {between }}=A_{1}-A_{2} \\
y_{\mathrm{a}}^{b}(x) \\
\hline
\end{aligned}
$$

Area between curves
OR $=\int_{\text {lower bound }}^{\text {apper bound }}$ (right curve - left curve) $d y$


$$
A_{1}=\int_{c}^{d} f(y) d y
$$

$$
A_{2}=\int_{c}^{d} g(y) d y
$$

